Vectorial Observation of Spin Seebeck Effect in NiFe$_2$O$_4$ Thin Films

Zhong Li,1,1 Amit Vikram Singh,1 Jan Kriief,2 Ankur Rastogi,3 Tim Mewes,1 Timo Kuschel,2 and Arunava Gupta1

1Center for Materials for Information Technology, The University of Alabama, Tuscaloosa Alabama 35487, USA, 2Center for Spin electronic Materials and Devices, Department of Physics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany, 3Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Introduction

The spin Seebeck effect (SSE), which generates spin current via temperature gradient through thin films (e.g. Y$_3$Fe$_5$O$_{12}$, NiFe$_2$O$_4$), has been an active research area of spin caloritronics. We have grown NiFe$_2$O$_4$ thin films on different substrates and studied the effect of lattice mismatch, and found that decreasing lattice match between thin film and substrate enhances thermally generated spin current from Pt/NiFe$_2$O$_4$ thin films. Moreover, we find that two perpendicular simultaneous SSE measurements can be used for vectorial magnetometry, visualizing the magnetization process in the thin film.

Motivation

- Optimize the deposition conditions for nickel ferrite (NiFe$_2$O$_4$ or NFO) thin films
- Enhance thermally generated spin voltage at NFO/Pt interface
- Explore a new alternative vectorial magnetometry technique to observe magnetization reversal

Methodology

- Pulsed laser deposition (PLD)

<table>
<thead>
<tr>
<th>Target Substrates</th>
<th>Fluence (J/cm2)</th>
<th>O$_2$ Pressure (mTorr)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiFe$_2$O$_4$</td>
<td>~1000</td>
<td>10</td>
<td>700</td>
</tr>
<tr>
<td>MgGa$_2$O$_4$ (110 or 100)</td>
<td>~1000</td>
<td>10</td>
<td>700</td>
</tr>
<tr>
<td>CoGa$_2$O$_4$ (110 or 100)</td>
<td>~1000</td>
<td>10</td>
<td>700</td>
</tr>
</tbody>
</table>

- Structural characterization by X-Ray Diffraction (XRD), X-Ray Reflectivity (XRR) and Rocking Curve (RC) measurements
- Vibrating Sample Magnetometry (VSM)
- Ferromagnetic resonance (FMR)
- Spin Seebeck effect (SSE) measurements

Experimental setup

- (a) Longitudinal SSE setup. The sample is sandwiched between two copper blocks and a temperature gradient ΔT is applied. (b) The geometry for four-point vectorial SSE measurements. (Diagonal direction SSE measurement also can be done besides X and Y directions.)

References

Acknowledgments

This work is supported by NSF ECCS Grant No. 1102263.

Results and discussion

- Standard θ-2θ diffraction patterns of NFO films (1) and different substrates (MGO (110), MGO (100), CGO (110), CGO (100))(2), respectively.
- Normalized in-plane (IP) magnetization versus magnetic field for NFO/MGO (110) (a), NFO/CGO (110) (b) and NFO/MGO (100) (c), respectively. The magnetization is measured with the external in-plane magnetic field applied in two perpendicular directions for all samples.
- LSSE measurements at various angles for Pt/NFO/MGO (110) with voltage is measured (a) along the hard axis direction (AC), and (b) along the easy axis direction (BD), respectively.
- LSSE measurements at various angles for Pt/NFO/CGO (110) with voltage is measured (a) along 0° direction (AC), and (b) along 90° direction (BD), respectively.

Conclusions

- Two perpendicular SSE measurements were carried out simultaneously for the first time.
- The lattice mismatch between the film and the substrate leads to strain anisotropy in the NFO thin film, which is higher for MGO than CGO substrate.
- The voltages obtained from two perpendicular SSE measurements reveal the complete reversal process of magnetization, which has potential for a new alternative vectorial magnetometry for magnetization reversal.

Email: zll73@ua.edu